The autosomal recessive immunodeficiency, centromeric instability and facial anomalies (ICF) syndrome is a genetically heterogeneous disorder. Despite recent successes in the identification of the underlying gene defects, it is currently unclear how mutations in any of the four known ICF genes cause a primary immunodeficiency. Here we demonstrate that loss of ZBTB24 in B cells from ICF2 patients impairs non-homologous end-joining (NHEJ) during immunoglobulin class-switch recombination and consequently impairs immunoglobulin production and subtype balance. Mechanistically, we found that ZBTB24 associates with poly(ADP-ribose) polymerase 1 (PARP1) and stimulates auto-poly(ADP-ribosyl)ation of this enzyme. The zinc finger in ZBTB24 binds PARP1-associated poly(ADP-ribose) chains and mediates the PARP1-dependent recruitment of ZBTB24 to DNA breaks. Moreover, by binding to poly(ADP-ribose) chains ZBTB24 protects these moieties from degradation by poly(ADP-ribose) glycohydrolase (PARG). This enhances the poly(ADP-ribose)-dependent interaction between PARP1 and the LIG4/XRCC4 NHEJ complex and promotes NHEJ by facilitating the assembly of this repair complex at DNA breaks. Thus, we uncover ZBTB24 as a regulator of PARP1-dependent NHEJ and class-switch recombination, providing a molecular basis for the immunodeficiency in ICF syndrome.